Homework 8: Solutions to exercises not appearing in Pressley

Math 120A

- (6.2.6) We have a surface patch $\sigma: U \rightarrow S$ with first fundamental form $d u^{2}+f(u)^{2} d v^{2}$. By possibly shrinking U, we can assume that $U=(a, b) \times(c, d)$ where $d-c<2 \pi$. Note that our assertion that $d u^{2}+f(u)^{2} d v^{2}$ is the first fundamental form implies that $|f(u)|>0$ everywhere on the surface patch. Ergo without loss of generality $f(u)>0$ on (a, b). Now, let $g(u)=\int_{u_{0}}^{u} \sqrt{1-\dot{f}^{2}} d t$, where $u_{0} \in(a, b)$ is some constant. By assumption $|\dot{f}|<1$, so the integrand is strictly positive and $g(u)$ is therefore smooth. Furthermore, $\dot{g}^{2}+\dot{f}^{2}=(1-\dot{f})^{2}+\dot{f}^{2}=1$, so the curve $\gamma(u)=(f(u), 0, g(u))$ is unit speed. We let $\widetilde{\sigma}: U \rightarrow \mathbb{R}^{2}$ be a surface patch with $\widetilde{\sigma}(u, v)=(f(u) \cos v, f(u) \sin v, g(v))$. This is regular surface patch by standard computations for a surface of revolution. Then we consider the map $f(\sigma(U)) \rightarrow \widetilde{\sigma(U)}$ which takes $\sigma(u, v) \rightarrow \widetilde{\sigma(u, v)}$. Since this map is $\tilde{\sigma} \circ \sigma^{-1}$, and both surface patches are invertible, it is a local diffeomorphism. Moreover, $\tilde{\sigma}=f \circ \sigma$, and the first fundamental forms of σ and $\widetilde{\sigma}$ are the same, since the first fundamental form for a surface patch of a surface of revolution obtained from rotating a unit speed curve $\gamma(u)=(f(u), 0, g(u))$ about the z axis is in general $d u^{2}+f(u)^{2} d v^{2}$. Ergo the two surfaces $\sigma(u, v)$ and $\widetilde{\sigma(u, v)}$ are locally isometric.
- (6.3.9) Let $\sigma(u, v)=(u \cos v, u \sin v, f(u))$. We are interested in finding functions f for which this surface patch is conformal, that is, for which the first fundamental form of the surface patch can be expressed in coordinates as $\lambda(u, v)\left(d u^{2}+d v^{2}\right)$, where $\lambda(u, v)>0$ is a smooth function of the domain U of the surface patch. This means we want $\sigma_{u} \cdot \sigma_{u}=\lambda=\sigma_{v} \cdot \sigma_{v}$ everywhere, and $\sigma_{u} \cdot \sigma_{v}=0$. (In more abstract language, the two partial derivative vectors of σ are orthogonal and have the same length.) We have the following:

$$
\begin{array}{r}
\sigma_{u}=(\cos v, \sin v, \dot{f}) \\
\sigma_{v}=(-u \sin v, u \cos v, 0) \\
\sigma_{u} \cdot \sigma_{u}=1+\dot{f}^{2} \\
\sigma_{v} \cdot \sigma_{v}=u^{2} \\
\sigma_{u} \cdot \sigma_{v}=0
\end{array}
$$

Ergo we're interested in functions $f(u)$ for which $1+\dot{f}^{2}=u^{2}$. Note that we must have $u \geq 1$ for this to be true; since our surface patch is presumably defined on an open set we in fact have $u>1$. Ergo $\dot{f}= \pm \sqrt{u^{2}-1}$, which is smooth on $u>1$. The integral $\int \sqrt{u^{2}-1} d u$ can be solved by hyperbolic or ordinary trig substitution, and works out to

$$
f(u)= \pm \frac{1}{2}\left[u \sqrt{u^{2}-1}-\cosh ^{-1}(u)\right]+c
$$

