Homework 8: Solutions to exercises not appearing in Pressley Math 120A

- (6.2.6) We have a surface patch $\sigma: U \to S$ with first fundamental form $du^2 + f(u)^2 dv^2$. By possibly shrinking U, we can assume that $U = (a, b) \times (c, d)$ where $d - c < 2\pi$. Note that our assertion that $du^2 + f(u)^2 dv^2$ is the first fundamental form implies that |f(u)| > 0 everywhere on the surface patch. Ergo without loss of generality f(u) > 0 on (a, b). Now, let $g(u) = \int_{u_0}^u \sqrt{1 - \dot{f}^2} dt$, where $u_0 \in (a, b)$ is some constant. By assumption $|\dot{f}| < 1$, so the integrand is strictly positive and g(u) is therefore smooth. Furthermore, $\dot{g}^2 + \dot{f}^2 = (1 - \dot{f})^2 + \dot{f}^2 = 1$, so the curve $\gamma(u) = (f(u), 0, g(u))$ is unit speed. We let $\tilde{\sigma}: U \to \mathbb{R}^2$ be a surface patch with $\tilde{\sigma}(u, v) = (f(u) \cos v, f(u) \sin v, g(v))$. This is regular surface patch by standard computations for a surface of revolution. Then we consider the map $f(\sigma(U)) \to \tilde{\sigma(U)}$ which takes $\sigma(u, v) \to \tilde{\sigma(u, v)}$. Since this map is $\tilde{\sigma} \circ \sigma^{-1}$, and both surface patches are invertible, it is a local diffeomorphism. Moreover, $\tilde{\sigma} = f \circ \sigma$, and the first fundamental forms of σ and $\tilde{\sigma}$ are the same, since the first fundamental form for a surface patch of a surface of revolution obtained from rotating a unit speed curve $\gamma(u) = (f(u), 0, g(u))$ about the z axis is in general $du^2 + f(u)^2 dv^2$.
- (6.3.9) Let $\sigma(u, v) = (u \cos v, u \sin v, f(u))$. We are interested in finding functions f for which this surface patch is conformal, that is, for which the first fundamental form of the surface patch can be expressed in coordinates as $\lambda(u, v)(du^2 + dv^2)$, where $\lambda(u, v) > 0$ is a smooth function of the domain U of the surface patch. This means we want $\sigma_u \cdot \sigma_u = \lambda = \sigma_v \cdot \sigma_v$ everywhere, and $\sigma_u \cdot \sigma_v = 0$. (In more abstract language, the two partial derivative vectors of σ are orthogonal and have the same length.) We have the following:

$$\sigma_u = (\cos v, \sin v, \dot{f})$$

$$\sigma_v = (-u \sin v, u \cos v, 0)$$

$$\sigma_u \cdot \sigma_u = 1 + \dot{f}^2$$

$$\sigma_v \cdot \sigma_v = u^2$$

$$\sigma_u \cdot \sigma_v = 0$$

Ergo we're interested in functions f(u) for which $1 + \dot{f}^2 = u^2$. Note that we must have $u \ge 1$ for this to be true; since our surface patch is presumably defined on an open set we in fact have u > 1. Ergo $\dot{f} = \pm \sqrt{u^2 - 1}$, which is smooth on u > 1. The integral $\int \sqrt{u^2 - 1} du$ can be solved by hyperbolic or ordinary trig substitution, and works out to

$$f(u) = \pm \frac{1}{2} [u\sqrt{u^2 - 1} - \cosh^{-1}(u)] + c.$$